Leaf Nitrogen Traits in Response to Plant Density and Nitrogen Supply in Oilseed Rape

Author:

Labra Marcelo H.ORCID,Struik Paul C.ORCID,Calderini Daniel F.ORCID,Evers Jochem B.

Abstract

Understanding the response of plant nitrogen (N) and carbon (C) economies in oilseed rape, as well as their role in defining phenotypic plasticity, is necessary for designing new strategies to optimize plant and canopy C assimilation to improve potential yield. This paper aims to elucidate the extent to which the interaction between N supply and plant population density alters N distribution in oilseed rape plant (Brassica napus L.) and whether this interaction changes plant investment in leaf area or leaf mass per area. Spring oilseed rape was grown at two rates of N supply (50 and 150 kg N·ha−1) and two plant population densities (50 and 150 plants·m−2). Photosynthesis, leaf area, leaf biomass, and N content of selected leaves were measured at 20% of flowers on main raceme open. The interaction between N supply and plant population density altered leaf N content per area, which is the main determinant of photosynthesis. This interaction also affected leaf mass per area, while N supply determined N content per unit leaf mass. These results suggest that the interaction between N supply and population density affects both nitrogen distribution and leaf mass per area, which could have important implications for light distribution and, therefore, for C assimilation at the plant level.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference69 articles.

1. Increasing homogeneity in global food supplies and the implications for food security

2. Seed yield and quality responses of winter oilseed rape (Brassica napus) to plant density and nitrogen fertilization;Momoh;Indian J. Agric. Sci.,2004

3. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades

4. Crop production. Food and Agriculture Organization of the United Nations, Statistics Divisionhttp://www.fao.org/faostat/en/#data/QC

5. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3