Optimizing the Growth of Silage Maize by Adjusting Planting Density and Nitrogen Application Rate Based on Farmers’ Conventional Planting Habits

Author:

Qian Yinsen1,Ma Quan1,Ren Zhen1,Zhu Guanglong2ORCID,Zhu Xinkai123,Zhou Guisheng12

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

3. Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

Silage maize is cultivated due to its high nutritional value as a forage. China’s recent agricultural policy promotes the popularization and cultivation of silage maize. The production of silage maize is affected by planting density and nitrogen application. Based on investigating the planting habits of local farmers, we adjusted the planting density and nitrogen application rate to optimize the growth of silage maize. This study was conducted to investigate the effects of planting density (65,000 plant ha−1 (D1), 80,000 plant ha−1 (D2), and 95,000 plant ha−1 (D3)) and nitrogen rate (150 kg ha−1 (N1), 230 kg ha−1 (N2), and 310 kg ha−1 (N3)) on growth, yield, and quality of silage maize using a two-factor random block design. Planting density and nitrogen fertilizer significantly affected plant height, stem diameter, leaf area index, crude protein, neutral detergent fiber, acid detergent fiber, and starch of silage maize. In summary, the combination of a planting density of 80,000 plants ha−1 and a nitrogen application rate of 310 kg ha−1 produced a higher crude protein and starch yield and better palatability and quality; this result can aid silage maize growth.

Funder

China National Key Research and Development Program

Jiangsu Modern Agricultural Industrial Development Program

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3