TDDFusion: A Target-Driven Dual Branch Network for Infrared and Visible Image Fusion

Author:

Lu Siyu123,Ye Xiangzhou234,Rao Junmin234ORCID,Li Fanming23,Liu Shijian23

Affiliation:

1. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

2. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

3. Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In the field of image fusion, the integration of infrared and visible images aims to combine complementary features into a unified representation. However, not all regions within an image bear equal importance. Target objects, often pivotal in subsequent decision-making processes, warrant particular attention. Conventional deep-learning approaches for image fusion primarily focus on optimizing textural detail across the entire image at a pixel level, neglecting the pivotal role of target objects and their relevance to downstream visual tasks. In response to these limitations, TDDFusion, a Target-Driven Dual-Branch Fusion Network, has been introduced. It is explicitly designed to enhance the prominence of target objects within the fused image, thereby bridging the existing performance disparity between pixel-level fusion and downstream object detection tasks. The architecture consists of a parallel, dual-branch feature extraction network, incorporating a Global Semantic Transformer (GST) and a Local Texture Encoder (LTE). During the training phase, a dedicated object detection submodule is integrated to backpropagate semantic loss into the fusion network, enabling task-oriented optimization of the fusion process. A novel loss function is devised, leveraging target positional information to amplify visual contrast and detail specific to target objects. Extensive experimental evaluation on three public datasets demonstrates the model’s superiority in preserving global environmental information and local detail, outperforming state-of-the-art alternatives in balancing pixel intensity and maintaining the texture of target objects. Most importantly, it exhibits significant advantages in downstream object detection tasks.

Funder

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3