Author:
Landi Gregorio,Landi Giovanni E.
Abstract
A standard criterium in statistics is to define an optimal estimator as the one with the minimum variance. Thus, the optimality is proved with inequality among variances of competing estimators. The demonstrations of inequalities among estimators are essentially based on the Cramer, Rao and Frechet methods. They require special analytical properties of the probability functions, globally indicated as regular models. With an extension of the Cramer–Rao–Frechet inequalities and Gaussian distributions, it was proved the optimality (efficiency) of the heteroscedastic estimators compared to any other linear estimator. However, the Gaussian distributions are a too restrictive selection to cover all the realistic properties of track fitting. Therefore, a well-grounded set of inequalities must overtake the limitations to regular models. Hence, the inequalities for least-squares estimators are generalized to any model of probabilities. The new inequalities confirm the results obtained for the Gaussian distributions and generalize them to any irregular or regular model. Estimators for straight and curved tracks are considered. The second part deals with the shapes of the distributions of simplified heteroscedastic track models, reconstructed with optimal estimators and the standard (non-optimal) estimators. A comparison among the distributions of these different estimators shows the large loss in resolution of the standard least-squares estimators.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference15 articles.
1. Review of Particle Physics
2. Mathematical Statistic;Ivchenko,1990
3. Advanced Econometrics;Amemiya,1985
4. The Cramer—Rao Inequality to Improve the Resolution of the Least-Squares Method in Track Fitting
5. Probability distributions of positioning errors for some forms of center-of-gravity algorithms;Landi;arXiv,2020
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献