Generalized Inequalities to Optimize the Fitting Method for Track Reconstruction

Author:

Landi Gregorio,Landi Giovanni E.

Abstract

A standard criterium in statistics is to define an optimal estimator as the one with the minimum variance. Thus, the optimality is proved with inequality among variances of competing estimators. The demonstrations of inequalities among estimators are essentially based on the Cramer, Rao and Frechet methods. They require special analytical properties of the probability functions, globally indicated as regular models. With an extension of the Cramer–Rao–Frechet inequalities and Gaussian distributions, it was proved the optimality (efficiency) of the heteroscedastic estimators compared to any other linear estimator. However, the Gaussian distributions are a too restrictive selection to cover all the realistic properties of track fitting. Therefore, a well-grounded set of inequalities must overtake the limitations to regular models. Hence, the inequalities for least-squares estimators are generalized to any model of probabilities. The new inequalities confirm the results obtained for the Gaussian distributions and generalize them to any irregular or regular model. Estimators for straight and curved tracks are considered. The second part deals with the shapes of the distributions of simplified heteroscedastic track models, reconstructed with optimal estimators and the standard (non-optimal) estimators. A comparison among the distributions of these different estimators shows the large loss in resolution of the standard least-squares estimators.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference15 articles.

1. Review of Particle Physics

2. Mathematical Statistic;Ivchenko,1990

3. Advanced Econometrics;Amemiya,1985

4. The Cramer—Rao Inequality to Improve the Resolution of the Least-Squares Method in Track Fitting

5. Probability distributions of positioning errors for some forms of center-of-gravity algorithms;Landi;arXiv,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3