The Cramer—Rao Inequality to Improve the Resolution of the Least-Squares Method in Track Fitting

Author:

Landi Gregorio,Landi Giovanni E.

Abstract

The Cramer–Rao–Frechet inequality is reviewed and extended to track fitting. A diffused opinion attributes to this inequality the limitation of the resolution of the track fits with the number N of observations. It will be shown that this opinion is incorrect, the weighted least squares method is not subjected to that N-limitation and the resolution can be improved beyond those limits. In previous publications, simulations with realistic models and simple Gaussian models produced interesting results: linear growths of the peaks of the distributions of the fitted parameters with the number N of observations, much faster than the N of the standard least-squares. These results could be considered a violation of a well-known 1 / N -rule for the variance of an unbiased estimator, frequently reported as the Cramer–Rao–Frechet bound. To clarify this point beyond any doubt, a direct proof of the consistency of those results with this inequality would be essential. Unfortunately, such proof is lacking. Hence, the Cramer–Rao–Frechet developments are applied to prove the efficiency (optimality) of the simple Gaussian model and the consistency of the linear growth. The inequality remains valid even for irregular models supporting the similar improvement of resolution for the realistic models.

Publisher

MDPI AG

Subject

Instrumentation

Reference11 articles.

1. Improvements of track fitting with well tuned probability distributions for silicon strip detectors

2. Optimizing Momentum Resolution with a New Fitting Method for Silicon-Strip Detectors

3. Beyond the N-limit of the least squares resolution and the lucky-model;Landi;arXiv,2018

4. Stochastic time evolution, information geometry and Cramer-Rao bound;Ito;arXiv,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3