Investigation of the Inverse Magnus Effect on a Rotating Sphere in Hypersonic Rarefied Flow

Author:

Jiang Yazhong1ORCID,Ling Yuxing2,Zhang Shikang3

Affiliation:

1. Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China

2. School of Science, Wuhan University of Technology, Wuhan 430070, China

3. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

Explorations involving long-endurance and maneuvering flights in the upper atmosphere, as well as research on atmospheric entries of space debris or asteroids, call for a full understanding of hypersonic rarefied flows. The inverse Magnus effect occurs in the hypersonic rarefied flow past a rotating sphere, but the aerodynamic behavior is contrary to the Magnus effect in the continuum flow regime. In this article, a series of such flows are numerically studied using the direct simulation Monte Carlo (DSMC) method. By analyzing the flow fields, as well as the distributions of pressure and shear stress on the sphere, the formation of the inverse Magnus force can be attributed to the tangential momentum transfer between incident gas molecules and the windward surface. The variation laws of aerodynamic parameters with the rotation rate are presented and discussed.

Funder

National Natural Science Foundation of China

National Innovation and Entrepreneurship Training Program for College Students

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3