Interaction and breakdown induced by multiple optimal disturbances in hypersonic boundary layer

Author:

Guo PeixuORCID,Hao JiaaoORCID,Wen Chih-YungORCID

Abstract

The present paper finds that the coexistence of multiple primary instability waves may cause a non-trivial nonlinear interaction and breakdown process, which has not been reported before. In the considered Mach 6 flat-plate boundary layer, a global resolvent analysis reports three optimal disturbances (local maxima): a high-frequency planar wave, a low-frequency oblique wave and a stationary streak. For the dominant planar and oblique waves, a parabolised stability equation analysis identifies the initial non-modal transient growth and downstream modal growth. Initiated by these two optimal disturbances jointly, the complete linear and nonlinear instability processes until breakdown to turbulence are shown with direct numerical simulation. Owing to the transient growth, the oblique wave may be more significant than the planar wave in the breakdown. The oblique wave and scales of nonlinear interactions are pronounced in the outer layer, whose significance may not be comprehensively characterised by the wall pressure measurement. Fourier modes characterising the oblique-wave oblique breakdown, the planar-wave fundamental resonance, the planar-wave subharmonic resonance and the combination resonance related to a detuned mode are observed successively. The detuned mode seems to dominate the near-wall dynamics in the late nonlinear stage, characterised by $\varLambda$ -like structures. Meanwhile, the existence of this detuned mode is independent of the initial amplitude ratio and the absolute amplitude of the oblique and planar waves. Weakly nonlinear stability analyses demonstrate that the detuned mode is mainly a consequence of the secondary instability under the combination of planar and oblique primary waves. Wave vector plots reveal the resonant state of multiple triads. Energy budget and amplitude-correction analyses provide a clear physical image of energy transfer.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference87 articles.

1. Secondary Instability of Boundary Layers

2. Mack, L.M. 1984 Boundary-layer linear stability theory. AGARD Rep. 709.

3. Transition in open flow systems: a reassessment;Morkovin;Bull. Am. Phys. Soc.,1994

4. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

5. Effects of High-Speed Tunnel Noise on Laminar-Turbulent Transition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3