Oxygen Levels Affect Macrophage HIV-1 Gene Expression and Delay Resolution of Inflammation in HIV-Tg Mice

Author:

Jerebtsova Marina,Ahmad Asrar,Kumari Namita,Rutagarama Ornela,Nekhai SergeiORCID

Abstract

While antiretroviral therapy increases the longevity of people living with HIV (PLWH), about 30% of this population suffers from three or more concurrent comorbidities, whose mechanisms are not well understood. Chronic activation and dysfunction of the immune system could be one potential cause of these comorbidities. We recently demonstrated reduced macrophage infiltration and delayed resolution of inflammation in the lungs of HIV-transgenic mice. Additionally, trans-endothelial migration of HIV-positive macrophages was reduced in vitro. Here, we analyze macrophages’ response to LPS challenge in the kidney and peritoneum of HIV-Tg mice. In contrast to the lung infiltration, renal and peritoneal macrophage infiltrations were similar in WT and HIV-Tg mice. Higher levels of HIV-1 gene expression were detected in lung macrophages compared to peritoneal macrophages. In peritoneal macrophages, HIV-1 gene expression was increased when they were cultured at 21% O2 compared to 5% O2, inversely correlating with reduced trans-endothelial migration at higher oxygen levels in vitro. The resolution of macrophage infiltration was reduced in both the lung and the peritoneal cavity of HIV-Tg mice. Taken together, our study described the organ-specific alteration of macrophage dynamics in HIV-Tg mice. The delayed resolution of macrophage infiltration might constitute a risk factor for the development of multiple comorbidities in PLWH.

Funder

National Heart and Lung Institute

National Institute on Minority Health and Health Disparities

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3