Wireless Transmission Method for Large Data Based on Hierarchical Compressed Sensing and Sparse Decomposition

Author:

Qie YoutianORCID,Hao ChuangboORCID,Song PingORCID

Abstract

With the widespread application of wireless sensor networks, large-scale systems with high sampling rates are becoming more and more common. The amount of original data generated by the wireless sensor network is very large, and transmitting all the original data back to the host wastes network bandwidth and energy. This paper proposes a wireless transmission method for large data based on hierarchical compressed sensing and sparse decomposition. This method includes a hierarchical signal decomposition method based on the same sparse basis and different sparse basis hierarchical compressed sensing method with a mask. Compared with the traditional compressed sensing method, this method reduces the error of signal reconstruction, reduces the amount of calculation during signal reconstruction, and reduces the occupation of hardware resources. We designed comparison experiments between the traditional compressed sensing algorithm and the method proposed in this article. In addition, the experiments’ results prove that our proposed method reduces the execution time, as well as the reconstruction error, compared with the traditional compressed sensing algorithm, and it can achieve better reconstruction at a relatively low compression ratio.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Dynamic Sampling Method Based on Features of Test Data;2023 2nd International Conference on Sensing, Measurement, Communication and Internet of Things Technologies (SMC-IoT);2023-12-29

2. A Novel Complex-Valued Gaussian Measurement Matrix for Image Compressed Sensing;Entropy;2023-08-22

3. A Censoring Scheme for Multiclassification in Wireless Sensor Networks;IEEE Sensors Journal;2023-07-01

4. Deep learning for compressive sensing: a ubiquitous systems perspective;Artificial Intelligence Review;2022-09-07

5. Encrypted transmission method of sensitive data in energy big data center based on AES algorithm;International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2021);2021-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3