Deep learning for compressive sensing: a ubiquitous systems perspective

Author:

Machidon Alina L.ORCID,Pejović Veljko

Abstract

AbstractCompressive sensing (CS) is a mathematically elegant tool for reducing the sensor sampling rate, potentially bringing context-awareness to a wider range of devices. Nevertheless, practical issues with the sampling and reconstruction algorithms prevent further proliferation of CS in real world domains, especially among heterogeneous ubiquitous devices. Deep learning (DL) naturally complements CS for adapting the sampling matrix, reconstructing the signal, and learning from the compressed samples. While the CS–DL integration has received substantial research interest recently, it has not yet been thoroughly surveyed, nor has any light been shed on practical issues towards bringing the CS–DL to real world implementations in the ubiquitous computing domain. In this paper we identify main possible ways in which CS and DL can interplay, extract key ideas for making CS–DL efficient, outline major trends in the CS–DL research space, and derive guidelines for the future evolution of CS–DL within the ubiquitous computing domain.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Reference156 articles.

1. Ablin P, Moreau T, Massias M, Gramfort A (2019) Learning step sizes for unfolded sparse coding. In: Advances in neural information processing system, pp 13100–13110

2. Adler A, Elad M, Zibulevsky, M (2016a) Compressed learning: a deep neural network approach. arXiv:1610.09615

3. Adler A, Boublil D, Elad M, Zibulevsky M (2016b) A deep learning approach to block-based compressed sensing of images. arXiv:1606.01519

4. Aggarwal CC et al (2018) Neural networks and deep learning, vol 10. Springer, New York, pp 978–983

5. Al-Azawi MKM, Gaze AM (2017) Combined speech compression and encryption using chaotic compressive sensing with large key size. IET Signal Proc 12(2):214–218

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3