Effects of Curing Temperature on Bending Durability of Inkjet-Printed Flexible Silver Electrode

Author:

Kim Nam WoonORCID,Lee Duck-Gyu,Kim Kyung-Shik,Hur Shin

Abstract

Flexible electrodes should have a good mechanical durability and electrical properties under even extreme bending and deformation conditions. We fabricated such an electrode using an inkjet printing system. In addition, annealing was performed under curing temperatures of 150, 170, and 190 °C to improve the electrical resistance performance of the electrode. Scanning electron microscopy, X-ray diffraction, nanoindentation, and surface profile measurements were performed to measure and analyze the electrode characteristics and the change in the shape of the coffee ring. The bending deformation behavior of the electrode was predicted by simulations. To confirm the bending durability of the flexible electrode according to different curing temperatures, the bending deformation and electrical resistance were simultaneously tested. It was found that the electrode cured at a temperature of 170 °C could endure 20,185 bending cycles and had the best durability, which was consistent with the predicted simulation results. Moreover, the average specific resistance before the electrode was disconnected was 13.45 μΩ cm, which is similar to the conventional electrode value. These results are expected to increase the durability and life of flexible electrodes, which can be used in flexible electronic devices, sensors, and wearable devices that are subjected to significant bending deformation.

Funder

National Research Foundation of Korea

Korea Institute of Machinery and Materials

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3