Inkjet printing of silver conductive ink on textiles for electronic applications: impact of ink formulation on electrical performances of the ink

Author:

Boumegnane Abdelkrim,Batine Assia,Nadi Ayoub,Dahrouch Abdelouahed,Stambouli Abdelhamid,Cherkaoui Omar,Tahiri Mohamed

Abstract

Abstract Printed electronics technology is one of the most dynamic in the world, allowing for the low-cost fabrication of electronic networks on textile substrates using the inkjet printing technique which is commonly used in various industries. In the field of formulation of conductive inks, silver nanoparticles are generally used as precursors that confer electrical conductivity to the printed patterns. In the present work, we synthesized silver nanoparticles by an ecological reduction method and then dispersed them in a PEG/Glycerol mixture to prepare a conductive ink. The silver nanoparticles were characterized by X-ray diffraction (XRD), as well as the morphology of the printed silver tracks was characterized by SEM. The developed ink was then successfully printed on a piece of pre-treated cotton fabric to produce flexible electronic components on the textile.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3