Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow

Author:

Sofos FilipposORCID,Karakasidis TheodorosORCID,Sarris Ioannis E.ORCID

Abstract

The present paper employs Molecular Dynamics (MD) simulations to reveal nanoscale ion separation from water/ion flows under an external electric field in Poiseuille-like nanochannels. Ions are drifted to the sidewalls due to the effect of wall-normal applied electric fields while flowing inside the channel. Fresh water is obtained from the channel centerline, while ions are rejected near the walls, similar to the Capacitive DeIonization (CDI) principles. Parameters affecting the separation process, i.e., simulation duration, percentage of the removal, volumetric flow rate, and the length of the nanochannel incorporated, are affected by the electric field magnitude, ion correlations, and channel height. For the range of channels investigated here, an ion removal percentage near 100% is achieved in most cases in less than 20 ns for an electric field magnitude of E = 2.0 V/Å. In the nutshell, the ion drift is found satisfactory in the proposed nanoscale method, and it is exploited in a practical, small-scale system. Theoretical investigation from this work can be projected for systems at larger scales to perform fundamental yet elusive studies on water/ion separation issues at the nanoscale and, one step further, for designing real devices as well. The advantages over existing methods refer to the ease of implementation, low cost, and energy consumption, without the need to confront membrane fouling problems and complex electrode material fabrication employed in CDI.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3