Investigation of water desalination/purification with molecular dynamics and machine learning techniques

Author:

Stavrogiannis Christos,Sofos Filippos,Karakasidis Theodoros. E.,Vavougios Denis

Abstract

<abstract> <p>This paper incorporates a number of parameters, such as nanopore size, wall wettability, and electric field strength, to assess their effect on ion removal from nanochannels filled with water. Molecular dynamics simulations are incorporated to monitor the process and a numerical database is created with the results. We show that the movement of ions in water nanochannels under the effect of an electric field is multifactorial. Potential energy regions of various strength are formed inside the nanochannel, and ions are either drifted to the walls and rejected from the solution or form clusters that are trapped inside low potential energy regions. Further computational investigation is made with the incorporation of machine learning techniques that suggest an alternative path to predict the water/ion solution properties. Our test procedure here involves the calculation of diffusion coefficient values and the incorporation of four ML algorithms, for comparison reasons, which exploit MD calculated results and are trained to predict the diffusion coefficient values in cases where no simulation data exist. This two-fold computational approach constitutes a fast and accurate solution that could be adjusted to similar ion separation models for property extraction.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3