Author:
Joo Jaewon,Tian Yong,Zheng Chunmiao,Zheng Yi,Sun Zan,Zhang Aijing,Chang Hyungjoon
Abstract
Integrated surface water–groundwater (SW–GW) models could be used to assess the impacts of climate change or variability on the hydrological cycle. However, the damping effects of the hydrological system have rarely been explored via integrated SW–GW modeling. This paper presents an integrated modeling study in a typical humid area, the Miho catchment in Korea, using an integrated model called Groundwater and Surface-water FLOW (GSFLOW). The major findings of this study are as follows: (1) The simulated results from 2005 to 2014 indicate that the temporal variability in the streamflow, stream-groundwater interactions and groundwater recharge are dominated by the precipitation, while the temporal variability in the evapotranspiration (ET) is controlled by the energy conditions; (2) Damping effects can affect the hydrological cycle across different temporal and spatial scales. At the catchment scale, the soil zone and aquifer play a dominant role in damping the precipitation on monthly and annual time scales, respectively; (3) Variability in the capacity to buffer earlier precipitation is found at small spatial scales, such as streams, and larger spatial scales, such as the whole catchment. This variability could affect the water balance at larger spatial scales and affect the hydrography recession at smaller spatial scales.
Funder
National Natural Science Foundation of China
Shenzhen Science and Technology Innovation Commission
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献