A Method for Identifying the Dominant Meteorological Factors of Atmospheric Evaporative Demand in Mid‐Long Term

Author:

Liu Saiyan1,Xie Yangyang12ORCID,Fang Hongyuan1,Xu Pengcheng1ORCID,Du Huihua3ORCID

Affiliation:

1. College of Hydraulic Science and Engineering Yangzhou University Yangzhou China

2. Modern Rural Water Resources Research Institute Yangzhou University Yangzhou China

3. Nanjing Hydraulic Research Institute Nanjing China

Abstract

AbstractTo better understand the changes in the atmospheric evaporative demand (AED) in the context of global warming, the anomaly contribution analysis is presented to estimate mid‐long term contributions of meteorological factors to the AED. The Pearson correlation coefficient (RP) between the total contribution (ψ) of meteorological factors and the relative variation (ϕ) of the AED, and the Sen's trend slope (βS) of (ϕ, ψ) scatters are used to evaluate the applicability of the method. The smaller the values of |1 − RP| and |1 − βS|, the more applicable the method is. To validate the method, the reference crop evapotranspiration is employed as a proxy for the AED. The multi‐year contribution analysis is used as a comparison approach, which can only investigate the dominant meteorological factors of the AED in long term. Moreover, the Huaihe River basin of China is taken as a case study. Results show that (a) the values of |1 − RP| and |1 − βS| in mid‐long term are less than 0.1 in most cases when applying the anomaly contribution analysis, and the mid‐long term contribution processes of meteorological factors to the AED are clearly demonstrated; and (b) the wind speed and sunshine hours are the two most dominant factors (the total absolute contribution exceeds 60%) in long term, but they are not always the dominant factors in mid‐long term (e.g., wind speed in summer, and sunshine hours in winter). Therefore, the anomaly contribution analysis is a reasonable and effective method, which can help to gain insights into the changes in the AED.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3