Short Exposure to Ethanol Diminishes Caspase-1 and ASC Activation in Human HepG2 Cells In Vitro

Author:

Hörauf Jason-Alexander,Kany ShinwanORCID,Janicova Andrea,Xu Baolin,Vrdoljak Teodora,Sturm Ramona,Dunay Ildiko Rita,Martin Lukas,Relja Borna

Abstract

This paper discusses how the assembly of pro-caspase-1 and apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) in macromolecular protein complexes, inflammasomes, activates caspase-1. The present study investigates the molecular mechanisms of inflammasome activation in HepG2 cells and examines how short exposures to ethanol (EtOH) affect inflammasome activation. HepG2 cells were treated with lipopolysaccharide (LPS), ATP or nigericin (NIG) in a two-step model. After LPS priming, ATP or NIG were added. As inhibitors, sodium orthovanadate (general inhibitor of tyrosine phosphatases), AC-YVAD-CMK (caspase-1 inhibitor) or AZ10606120 (purinergic receptor P2X7R inhibitor) were applied after LPS priming. To monitor the inflammasome activation, the caspase-1 activity, ASC speck formation, reactive oxygen species (ROS) production and cell death were analyzed. To elucidate the mechanistical approach of EtOH to the inflammasome assembly, the cells were treated with EtOH either under simultaneous LPS administration or concurrently with ATP or NIG application. The co-stimulation with LPS and ATP induced a significant ASC speck formation, caspase-1 activation, cell death and ROS generation. The inhibition of the ATP-dependent purinoreceptor P2X7 decreased the caspase-1 activation, whereas sodium orthovanadate significantly induced caspase-1. Additional treatment with EtOH reversed the LPS and ATP-induced caspase-1 activation, ASC speck formation and ROS production. The ASC speck formation and caspase-1 induction require a two-step signaling with LPS and ATP in HepG2 cells. Inflammasome activation may depend on P2X7. The molecular pathway of an acute effect of EtOH on inflammasomes may involve a reduction in ROS generation, which in turn may increase the activity of tyrosine phosphatases.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3