SGK-Net: A Novel Navigation Scene Graph Generation Network

Author:

Yang Wenbin1ORCID,Qiu Hao1,Luo Xiangfeng1,Xie Shaorong1

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Abstract

Scene graphs can enhance the understanding capability of intelligent ships in navigation scenes. However, the complex entity relationships and the presence of significant noise in contextual information within navigation scenes pose challenges for navigation scene graph generation (NSGG). To address these issues, this paper proposes a novel NSGG network named SGK-Net. This network comprises three innovative modules. The Semantic-Guided Multimodal Fusion (SGMF) module utilizes prior information on relationship semantics to fuse multimodal information and construct relationship features, thereby elucidating the relationships between entities and reducing semantic ambiguity caused by complex relationships. The Graph Structure Learning-based Structure Evolution (GSLSE) module, based on graph structure learning, reduces redundancy in relationship features and optimizes the computational complexity in subsequent contextual message passing. The Key Entity Message Passing (KEMP) module takes full advantage of contextual information to refine relationship features, thereby reducing noise interference from non-key nodes. Furthermore, this paper constructs the first Ship Navigation Scene Graph Simulation dataset, named SNSG-Sim, which provides a foundational dataset for the research on ship navigation SGG. Experimental results on the SNSG-sim dataset demonstrate that our method achieves an improvement of 8.31% (R@50) in the PredCls task and 7.94% (R@50) in the SGCls task compared to the baseline method, validating the effectiveness of our method in navigation scene graph generation.

Funder

National Natural Science Foundation of China

Development Project of Ship Situational Intelligent Awareness System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3