Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes

Author:

Tanpong Sirisak,Wongtangtintharn SawitreeORCID,Cherdthong AnusornORCID,Prachumchai RittikeardORCID,Tengjaroenkul Bundit,Chanjula Pin,Suntara Chanon,Wachirapakorn ChalongORCID

Abstract

Once improperly managed, the citric acid production industry generates waste, which contributes to pollution and other environmental issues. We proposed that, with sufficient quality improvement, citric acid by-product (CAP) might be used for animal feed, thereby reducing the environmental impact. The aim of the present study was to ferment citric acid by-product (CAP) by inoculation with lactic acid bacteria (LAB) and a fibrolytic enzyme mixture for quality improvement and crude fiber reduction in the waste products. LAB inoculants were L. casei TH14, and the additive enzyme used was a fibrolytic enzyme mixture (glucanase, pectinase, and carboxymethylcellulase) of a small-scale fermentation method. The seven treatments employed in this study were as follows: (1) control (untreated), (2) CAP-inoculated L. casei TH14 at 0.01% DM, (3) CAP-inoculated L. casei TH14 at 0.05% DM, (4) CAP-inoculated enzymes at 0.01% DM, (5) CAP-inoculated enzymes at 0.05% DM, (6) CAP-inoculated L. casei TH14 at 0.01% DM with enzymes at 0.01% DM, and (7) CAP-inoculated L. casei TH14 at 0.05% DM with enzymes at 0.05% DM. The samples were taken on days 1, 7, 14, 21, and 28 of ensiling, both before and after. Four replications were used. The results of the chemical composition of the CAP before and after ensilage inoculated with L. casei TH14 did not show any differences in crude protein, ether extract, ash, or gross energy, but the enzymes significantly (p < 0.05) decreased crude fiber and increased nitrogen-free extract. The combination was especially effective at improving the characteristics of CAP, with a reduction in crude fiber from 21.98% to 22.69%, of neutral detergent fiber (NDF) from 16.01% to 17.54%, and of acid detergent fiber (ADF) from 13.75% to 16.19%. Furthermore, the combination of L. casei TH14 and the enzyme increased crude protein from 1.75% to 2.24% at 28 days of ensiling. Therefore, CAP-inoculated L. casei TH14 did not change in chemical composition, while crude fiber, NDF, and ADF decreased when CAP was inoculated with enzyme. The combination of L. casei TH14 and the enzyme is more effective at improving chemical composition and reducing crude fiber and enhancing carbohydrate breakdown in the CAP. Finally, by enhancing the CAP’s quality, it may be possible to use it in animal feed and minimize its impact on the environment.

Funder

Program on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Ken University

Post-Doctoral Training Fellowship from the Graduate Studies, KKU

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3