The Investigation of High-Temperature SAW Oxygen Sensor Based on ZnO Films

Author:

Shu LinORCID,Wang Xuemin,Yan Dawei,Fan Long,Wu Weidong

Abstract

In this paper, a wireless oxygen sensor based on a surface acoustic wave (SAW) was reported. For high-temperature applications, novel Al2O3/ZnO/Pt multilayered conductive film was deposited on langasite substrate as the electrodes, and ZnO film obtained by the pulse laser deposition (PLD) method was used as the sensitive film. The measurements of X-ray diffraction (XRD) and a scanning electron microscope (SEM) showed that the c-axis orientation of the ZnO grains and the surface morphology of the films were regulated by the deposition temperature. Meanwhile, the gas response of the sensor was strongly dependent on the surface morphology of the ZnO film. The experimental results showed that the oxygen gas sensor could operate at a high-temperature environment up to 850 °C with good stability for a long period. The max frequency shift of the sensors reaches 310 kHz, when exposed to 40% O2 gas at 850 °C. The calculated standard error of the sensors in a high-temperature measurement process is within 3%. Additionally, no significant signal degradation could be observed in the long-term experimental period. The prepared SAW oxygen gas sensor has potential applications in high-temperature sensing systems.

Funder

China postdoctoral science foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3