High-Sensitivity Piezoelectric MEMS Accelerometer for Vector Hydrophones

Author:

Shi Shuzheng12,Ma Liyong1ORCID,Kang Kai1,Zhu Jie3,Hu Jinjiang14,Ma Hong1,Pang Yongjun1,Wang Zhanying1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

2. HBIS Group Co., Ltd., Shijiazhuang 050023, China

3. School of Computer Science and Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

4. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In response to the growing demand for high-sensitivity accelerometers in vector hydrophones, a piezoelectric MEMS accelerometer (PMA) was proposed, which has a four-cantilever beam integrated inertial mass unit structure, with the advantages of being lightweight and highly sensitive. A theoretical energy harvesting model was established for the piezoelectric cantilever beam, and the geometric dimensions and structure of the microdevice were optimized to meet the vibration pickup conditions. The sol-gel and annealing technology was employed to prepare high-quality PZT thin films on silicon substrate, and accelerometer microdevices were manufactured by using MEMS technology. Furthermore, the MEMS accelerometer was packaged for testing on a vibration measuring platform. Test results show that the PMA has a resonant frequency of 2300 Hz. In addition, there is a good linear relationship between the input acceleration and the output voltage, with V = 8.412a − 0.212. The PMA not only has high sensitivity, but also has outstanding anti-interference ability. The accelerometer structure was integrated into a vector hydrophone for testing in a calibration system. The results show that the piezoelectric vector hydrophone (PVH) has a sensitivity of –178.99 dB@1000 Hz (0 dB = 1 V/μPa) and a bandwidth of 20~1100 Hz. Meanwhile, it exhibits a good “8” shape directivity and consistency of each channel. These results demonstrate that the piezoelectric MEMS accelerometer has excellent capabilities suitable for use in vector hydrophones.

Funder

Hebei University of Architecture

Basic Scientific Research Business Project of Colleges and Universities in Hebei Province

Hebei Province “333 Talent Project” Funded Project

Young Top Talent Project of Hebei Provincial Department of Education

Zhangjiakou Basic Research and Talent Training Program Project

Zhangjiakou City key research and development plan special

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3