An RDL Modeling and Thermo-Mechanical Simulation Method of 2.5D/3D Advanced Package Considering the Layout Impact Based on Machine Learning

Author:

Wu Xiaodong1,Wang Zhizhen1,Ma Shenglin1ORCID,Chu Xianglong1,Li Chunlei1,Wang Wei2,Jin Yufeng3,Wu Daowei4

Affiliation:

1. Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China

2. School of Integrated Circuits, Peking University, Beijing 100871, China

3. School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

4. Xi’an Microelectronic Technology, Xi’an 710071, China

Abstract

The decreasing-width, increasing-aspect-ratio RDL presents significant challenges to the design for reliability (DFR) of an advanced package. Therefore, this paper proposes an ML-based RDL modeling and simulation method. In the method, RDL was divided into blocks and subdivided into pixels of metal percentage, and the RDL was digitalized as tensors. Then, an ANN-based surrogate model was built and trained using a subset of tensors to predict the equivalent material properties of each block. Lastly, all blocks were transformed into elements for simulations. For validation, line bending simulations were conducted on an RDL, with the reaction force as an accuracy indicator. The results show that neglecting layout impact caused critical errors as the substrate thinned. According to the method, the reaction force error was 2.81% and the layout impact could be accurately considered with 200 × 200 elements. For application, the TCT maximum temperature state simulation was conducted on a CPU chip. The simulation indicated that for an advanced package, the maximum stress was more likely to occur in RDL rather than in bumps; both RDL and bumps were critically impacted by layouts, and RDL stress was also impacted by vias/bumps. The proposed method precisely concerned layout impacts with few resources, presenting an opportunity for efficient improvement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Review: Global Criticality Assessment Based on Feature Surrogates at the PCBA Levels;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

2. Warpage Optimization of Package Substrates Using Metamodels - A Review;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3