Wavelet Packet Singular Entropy-Based Method for Damage Identification in Curved Continuous Girder Bridges under Seismic Excitations

Author:

Li Dayang,Cao Maosen,Deng Tongfa,Zhang Shixiang

Abstract

Curved continuous girder bridges (CCGBs) have been widely adopted in the civil engineering field in recent decades for complex interchanges and city viaducts. Unfortunately, compared to straight bridges, this type of bridge with horizontal curvature is relatively vulnerable to earthquakes characterized by large energy and short duration. Seismic damage can degrade the performance of CCGBs, threatening their normal operation and even resulting in collapse. Detection of seismic damage in CCGBs is thus significantly important but is still not well resolved. To this end, a new method based on wavelet packet singular entropy (WPSE) is proposed to identify seismic damage by analyzing the dynamic responses of CCGBs to seismic excitation. This WPSE-based approach features characterizing damage using synergistic advantage of the wavelet packet transform, singular value decomposition, and information entropy. To testify the algorithm, a finite element model of a typical CCGB with two types of seismic damage is built, in which the seismic damage is individually modeled by stiffness reductions at the bottom of piers and at pier-girder connections. The displacement responses of the model to El Centro seismic excitation is used to identify the damage. The results show that damage indices in the WPSE-based approach can correctly locate the seismic damage in CCGBs. Furthermore, the WPSE-based method is competent to identify damage with higher accuracy in comparison with the wavelet packet energy based method, and has a strong immunity to noise revealed by robustness analysis. An array of responses used in this approach paves the way of developing practical technologies for detecting seismic damage using advanced distributed sensing techniques, typically the optical sensors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3