Abstract
Simulation-based training has been proven to be a highly effective pedagogical strategy. However, misalignment between the participant’s level of expertise and the difficulty of the simulation has been shown to have significant negative impact on learning outcomes. To ensure that learning outcomes are achieved, we propose a novel framework for adaptive simulation with the goal of identifying the level of expertise of the learner, and dynamically modulating the simulation complexity to match the learner’s capability. To facilitate the development of this framework, we investigate the classification of expertise using biological signals monitored through wearable sensors. Trauma simulations were developed in which electrocardiogram (ECG) and galvanic skin response (GSR) signals of both novice and expert trauma responders were collected. These signals were then utilized to classify the responders’ expertise, successive to feature extraction and selection, using a number of machine learning methods. The results show the feasibility of utilizing these bio-signals for multimodal expertise classification to be used in adaptive simulation applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献