Spatiotemporal Evolution of Urban Expansion Using Landsat Time Series Data and Assessment of Its Influences on Forests

Author:

Zhang Meng,Du Huaqiang,Mao Fangjie,Zhou Guomo,Li Xuejian,Dong LuofanORCID,Zheng Junlong,Zhu Di’en,Liu Hua,Huang Zihao,He Shaobai

Abstract

Analysis of urban land use dynamics is essential for assessing ecosystem functionalities and climate change impacts. The focus of this study is on monitoring the characteristics of urban expansion in Hang-Jia-Hu and evaluating its influences on forests by applying 30-m multispectral Landsat data and a machine learning algorithm. Firstly, remote sensed images were preprocessed with radiation calibration, atmospheric correction and topographic correction. Then, the C5.0 decision tree was used to establish classification trees and then applied to make land use maps. Finally, spatiotemporal changes were analyzed through dynamic degree and land use transfer matrix. In addition, average land use transfer probability matrix (ATPM) was utilized for the prediction of land use area in the next 20 years. The results show that: (1) C5.0 decision tree performed with precise accuracy in land use classification, with an average total accuracy and kappa coefficient of more than 90.04% and 0.87. (2) During the last 20 years, land use in Hang-Jia-Hu has changed extensively. Urban area expanded from 5.84% in 1995 to 21.32% in 2015, which has brought about enormous impacts on cultivated land, with 198,854 hectares becoming urban, followed by forests with 19,823 hectares. (3) Land use area prediction based on the ATPM revealed that urbanization will continue to expand at the expense of cultivated land, but the impact on the forests will be greater than the past two decades. Rationality of urban land structure distribution is important for economic and social development. Therefore, remotely sensed technology combined with machine learning algorithms is of great significance to the dynamic detection of resources in the process of urbanization.

Funder

National Natural Science Foundation

the National Natural Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3