Abstract
Accurate crop-type maps are urgently needed as input data for various applications, leading to improved planning and more sustainable use of resources. Satellite remote sensing is the optimal tool to provide such data. Images from Synthetic Aperture Radar (SAR) satellite sensors are preferably used as they work regardless of cloud coverage during image acquisition. However, processing of SAR is more complicated and the sensors have development potential. Dealing with such a complexity, current studies should aim to be reproducible, open, and built upon free and open-source software (FOSS). Thereby, the data can be reused to develop and validate new algorithms or improve the ones already in use. This paper presents a case study of crop classification from microwave remote sensing, relying on open data and open software only. We used 70 multitemporal microwave remote sensing images from the Sentinel-1 satellite. A high-resolution, high-precision digital elevation model (DEM) assisted the preprocessing. The multi-data approach (MDA) was used as a framework enabling to demonstrate the benefits of including external cadastral data. It was used to identify the agricultural area prior to the classification and to create land use/land cover (LULC) maps which also include the annually changing crop types that are usually missing in official geodata. All the software used in this study is open-source, such as the Sentinel Application Toolbox (SNAP), Orfeo Toolbox, R, and QGIS. The produced geodata, all input data, and several intermediate data are openly shared in a research database. Validation using an independent validation dataset showed a high overall accuracy of 96.7% with differentiation into 11 different crop-classes.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献