A Systematic Review of Technologies, Control Methods, and Optimization for Extended-Range Electric Vehicles

Author:

Puma-Benavides David SebastianORCID,Izquierdo-Reyes JavierORCID,Calderon-Najera Juan de Dios,Ramirez-Mendoza Ricardo A.ORCID

Abstract

For smart cities using clean energy, optimal energy management has made the development of electric vehicles more popular. However, the fear of range anxiety—that a vehicle has insufficient range to reach its destination—is slowing down the adoption of EVs. The integration of an auxiliary power unit (APU) can extend the range of a vehicle, making them more attractive to consumers. The increased interest in optimizing electric vehicles is generating research around range extenders. These days, many systems and configurations of extended-range electric vehicles (EREVs) have been proposed to recover energy. However, it is necessary to summarize all those efforts made by researchers and industry to find the optimal solution regarding range extenders. This paper analyzes the most relevant technologies that recover energy, the current topologies and configurations of EREVs, and the state-of-the-art in control methods used to manage energy. The analysis presented mainly focuses on finding maximum fuel economy, reducing emissions, minimizing the system’s costs, and providing optimal driving performance. Our summary and evaluation of range extenders for electric vehicles seeks to guide researchers and automakers to generate new topologies and configurations for EVs with optimized range, improved functionality, and low emissions.

Funder

Consejo Nacional de Ciencia y Tecnología

Tecnologico de Monterrey

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3