An Algorithm for Solving Robot Inverse Kinematics Based on FOA Optimized BP Neural Network

Author:

Bai Yonghua,Luo Minzhou,Pang Fenglin

Abstract

The solution of robot inverse kinematics has a direct impact on the control accuracy of the robot. Conventional inverse kinematics solution methods, such as numerical solution, algebraic solution, and geometric solution, have insufficient solution speed and solution accuracy, and the solution process is complicated. Due to the mapping ability of the neural network, the use of neural networks to solve robot inverse kinematics problems has attracted widespread attention. However, it has slow convergence speed and low accuracy. This paper proposes the FOA optimized BP neural network algorithm to solve inverse kinematics. It overcomes the shortcomings of low convergence accuracy, slow convergence speed, and easy to fall into local minima when using BP neural network to solve inverse kinematics. The experimental results show that using the trained FOA optimized BP neural network to solve the inverse kinematics, the maximum error range of the output joint angle is [−0.04686, 0.1271]. The output error of the FOA optimized BP neural network algorithm is smaller than that of the ordinary BP neural network algorithm and the PSO optimized BP neural network algorithm. Using the FOA optimized BP neural network algorithm to solve the robot kinematics can improve the control accuracy of the robot.

Funder

Jiangsu Key R&D Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3