Abstract
A lot of computational models recently are undergoing rapid development. However, there is a conceptual and analytical gap in understanding the driving forces behind them. This paper focuses on the integration between computer science and social science (namely, education) for strengthening the visibility, recognition, and understanding the problems of simulation and modelling in social (educational) decision processes. The objective of the paper covers topics and streams on social-behavioural modelling and computational intelligence applications in education. To obtain the benefits of real, factual data for modeling student learning styles, this paper investigates exemplar-based approaches and possibilities to combine them with case-based reasoning methods for automatically predicting student learning styles in virtual learning environments. A comparative analysis of approaches combining exemplar-based modelling and case-based reasoning leads to the choice of the Bayesian Case model for diagnosing a student’s learning style based on the data about the student’s behavioral activities performed in an e-learning environment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献