Multi-Label Classification and Explanation Methods for Students’ Learning Style Prediction and Interpretation

Author:

Goštautaitė DaivaORCID,Sakalauskas Leonidas

Abstract

The current paper attempts to describe the methodology guiding researchers on how to use a combination of machine learning methods and cognitive-behavioral approaches to realize the automatic prediction of a learner’s preferences for the various types of learning objects and learning activities that may be offered in an adaptive learning environment. Generative as well as discriminative machine learning methods may be applied to the classification of students’ learning styles, based on the student’s historical activities in the e-learning process. This paper focuses on the discriminative models that try to learn which input activities of the student(s) will correlate with a particular learning style, discriminating among the inputs. This paper also investigates several interpretability approaches that may be applicable for the multi-label models trained on non-correlated and partially correlated data. The investigated methods and approaches are combined in a consistent procedure that can be used in practical learning personalization.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3