Laser-Based, Optical, and Traditional Diagnostics of NO and Temperature in 400 kW Pilot-Scale Furnace

Author:

Sepman Alexey,Fredriksson Christian,Ögren YngveORCID,Wiinikka Henrik

Abstract

A fast sensor for simultaneous high temperature (above 800 K) diagnostics of nitrogen oxide (NO) concentration and gas temperature (T) based on the spectral fitting of low-resolution NO UV absorption near 226 nm was applied in pilot-scale LKAB’s Experimental Combustion Furnace (ECF). The experiments were performed in plasma and/or fuel preheated air at temperatures up to 1550 K, which is about 200 K higher than the maximal temperature used for the validation of the developed UV NO sensor previously. The UV absorption NO and T measurements are compared with NO probe and temperature measurements via suction pyrometry and tuneable diode laser absorption (TDL) using H2O transitions at 1398 nm, respectively. The agreement between the NO UV and NO probe measurements was better than 15%. There is also a good agreement between the temperatures obtained using laser-based, optical, and suction pyrometer measurements. Comparison of the TDL H2O measurements with the calculated H2O concentrations demonstrated an excellent agreement and confirms the accuracy of TDL H2O measurements (better than 10%). The ability of the optical and laser techniques to resolve various variations in the process parameters is demonstrated.

Funder

Energimyndigheten

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3