Abstract
The type and concentration of dissolved gases in transformer insulating oil are used to assess transformer conditions. In this paper, an online detection setup for measuring the concentration of multicomponent gases dissolved in transformer insulating oil is developed, which consists of an oil-gas separation system and an optical system for acquiring the transformer status in real time. The oil-gas separation system uses low pressure, constant temperature, and low-frequency stirring as working conditions for degassing large-volume oil samples based on modified headspace degassing. The optical system uses tunable diode laser absorption spectroscopy (TDLAS) to determine the gas concentration. Six target gases (methane, ethylene, ethane, acetylene, carbon monoxide, and carbon dioxide) were detected by three near-infrared lasers (1569, 1684, and 1532 nm). The stability of the optical system was improved by the common optical path formed by time-division multiplexing (TDM) technology. The calibration experiments show that the second harmonics and the concentrations of the six gases are linear. A comparison experiment with gas chromatography (GC) demonstrates that the error of acetylene reaches the nL/L level, while the other gases reach the μL/L level. The data conforms to the power industry testing standards, and the state of the transformer is analyzed by the detected six characteristic gases. The setup provides an effective basis for the online detection of dissolved gas in transformer insulating oil.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献