Positively Charged Lipid as Potential Tool to Influence the Fate of Ethosomes

Author:

Mancuso AntoniaORCID,Cristiano Maria ChiaraORCID,Fresta MassimoORCID,Torella Daniele,Paolino DonatellaORCID

Abstract

Ethosomes® are one of the main deformable vesicles proposed to overcome the stratum corneum. They are composed of lecithin, ethanol and water, resulting in round vesicles characterized by a narrow size distribution and a negative surface charge. Taking into account their efficiency to deliver drugs into deeper skin layers, the current study was designed to evaluate the influence of different lipids on the physico-chemical features of traditional ethosomes in the attempt to influence their fate. Three lipids (DOPE, DSPE and DOTAP) were used for the study, but only DOTAP conferred a net positive charge to ethosomes, maintaining a narrow mean size lower than 300 nm and a good polydispersity index. Stability and in vitro cytotoxic studies have been performed using Turbiscan Lab analysis and MTT dye exclusion assay, respectively. Data recorded demonstrated the good stability of modified ethosomes and a reasonable absence of cell mortality when applied to human keratinocytes, NCTC 2544, which are used as a cell model. Finally, the best formulations were selected to evaluate their ability to encapsulate drugs, through the use of model compounds. Cationic ethosomes encapsulated oil red o and rhodamine b in amounts comparable to those recorded from conventional ethosomes (over 50%). Results recorded from this study are encouraging as cationic ethosomes may open new opportunities for skin delivery.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Device-assisted transdermal drug delivery

2. Transdermal and Topical Drug Administration in the Treatment of Pain

3. Hyaluronic acid conjugates for topical treatment of skin cancer lesions

4. Overcoming barriers by local drug delivery with liposomes

5. Skin Barrier and Transdermal Drug Delivery STRUCTURE AND ORIGIN OF THE SKIN BARRIER Stratum Corneum Structure and Organization;Prausnitz;Med. Ther.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3