In Silico Study of Novel Cyclodextrin Inclusion Complexes of Polycaprolactone and Its Correlation with Skin Regeneration

Author:

Escobedo-González René Gerardo1ORCID,Moyers-Montoya Edgar Daniel2ORCID,Martínez-Pérez Carlos Alberto2ORCID,García-Casillas Perla Elvia23,Miranda-Ruvalcaba René4ORCID,Nicolás-Vázquez María Inés Nicolás4ORCID

Affiliation:

1. Department of Industrial Maintenance, Technological University of the City of Juárez, Av. Universidad Tecnológica No. 3051, Col. Lote Bravo II, Ciudad Juárez 32695, Mexico

2. Institute of Engineering and Technology, Autonomous University of the City of Juárez (UACJ), Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Mexico

3. Applied Chemistry Research Center, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Mexico

4. Chemical Sciences Department, UNAM–FESC, Campus 1, Cuautitlán Izcalli 54740, Mexico

Abstract

Three novel biomaterials obtained via inclusion complexes of β–cyclodextrin, 6-deoxi-6-amino-β–cyclodextrin and epithelial growth factor grafted to 6-deoxi-6-amino-β–cyclodextrin with polycaprolactone. Furthermore, some physicochemical, toxicological and absorption properties were predicted using bioinformatics tools. The electronic, geometrical and spectroscopical calculated properties agree with the properties obtained via experimental methods, explaining the behaviors observed in each case. The interaction energy was obtained, and its values were −60.6, −20.9 and −17.1 kcal/mol for β–cyclodextrin/polycaprolactone followed by the 6-amino-β–cyclodextrin-polycaprolactone complex and finally the complex of epithelial growth factor anchored to 6-deoxy-6-amino–β–cyclodextrin/polycaprolactone. Additionally, the dipolar moments were calculated, achieving values of 3.2688, 5.9249 and 5.0998 Debye, respectively, and in addition the experimental wettability behavior of the studied materials has also been explained. It is important to note that the toxicological predictions suggested no mutagenic, tumorigenic or reproductive effects; moreover, an anti-inflammatory effect has been shown. Finally, the improvement in the cicatricial effect of the novel materials has been conveniently explained by comparing the poly-caprolactone data obtained in the experimental assessments.

Funder

Technological University of the City of Juárez

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3