Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification

Author:

Kane AbdoulayeORCID,Assadi Achraf Amir,El Jery AtefORCID,Badawi Ahmad K.ORCID,Kenfoud HamzaORCID,Baaloudj OussamaORCID,Assadi Aymen AminORCID

Abstract

In many nations, particularly those experiencing water scarcity, novel approaches are being applied to clean wastewater. Heterogeneous photocatalysis is the most widely used of these approaches because it entails the decomposition of organic molecules into water and carbon dioxide, which is a more ecologically benign process. In our study, we studied the photocatalytic degradation process on the effluent flumequine. This treatment is made through a solar pilot reactor in the presence of immobilized titanium dioxide with three light intensities and two types of water as solvents. A variety of factors that might influence the rate of deterioration, such as flow rate, light intensity, and initial concentration, have been investigated. The maximal degradation of flumequine was achieved at more than 90% after 2.5 h under optimal conditions (an initial concentration of 5 mg/L, three lamp light intensities, and a flow rate of 29 L/h). By combining the oxidized agent H2O2 with this process, the photocatalytic activity was improved further to 97% under the same conditions. The mineralization of this product has also been tested using total organic carbon (TOC) analysis. A high mineralization rate has been recorded at around 50% for a high initial concentration (20 mg/L) at a flow rate of 126 L/h. The results demonstrated the highly effective removal of flumequine and the efficacy of this photocatalytic system.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3