A Novel Parameter for Fatigue Damage Assessment of Laser-Repaired Nickel-Based Alloy

Author:

Zhao Jianyu,Geng ChuanqingORCID,Xie Huimin,Liu FeiORCID

Abstract

The fatigue damage assessment of laser-repaired components is critical to their service safety. However, since laser repairing is an advanced green remanufacturing technology, the current research on its fatigue mechanical behavior and fatigue damage evaluation methods is still immature. In addition, the relevant models used for the fatigue damage evaluation can only indicate the fatigue limit of components, which cannot describe the damage accumulation process of the components during the fatigue testing. Therefore, there is an urgent need to develop a fatigue damage evaluation method that can describe the fatigue damage accumulation and evolution to reveal the damage evolution mechanism during the fatigue test. In this study, based on the 3D-DIC technique, new damage parameters, i.e., strain average value and strain standard deviation, are proposed to quantitatively describe the damage status of the nickel-based components during the stress-based fatigue process. Then, based on the new damage parameters, a strain average value/strain standard deviation damage curve method is proposed to describe the damage status evolution of the components during the fatigue testing and evaluate its fatigue damage. For example, in the tensile fatigue test, the strain average value/strain standard deviation damage curves of the substrate component and the laser-repaired component can be divided into two damage stages. In the first damage stage, the damage increases slowly with the increase in the cycle number, whereas in the second damage stage, the damage increases rapidly with the increase in the cycle number. At this time, there is a demarcation point between the first damage stage and second damage stage in the strain average value damage curve and strain standard deviation damage curve. The cycle number of the demarcation point can be used as a reference value for the fatigue failure of the laser-repaired component. In addition, the electron backscatter diffraction (EBSD) technique was used to verify the validity of the evaluation results from the novel damage parameters.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3