Inhibitory Effect of Prickly Ash (Zanthoxylum bungeanum) Seed Kernel Oil on Lipid Metabolism of Grass Carp (Ctenopharyngodon idellus) in High-Fat Diet

Author:

Wang Ping1,Zhu Ziling1,Xu Qinglai1,Xing Yangfen1,Zhang Mingyue1,Zhou Jishu1

Affiliation:

1. Laboratory of Aquatic Animal Nutrition and Feed Science, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

Abstract

To investigate the effect of prickly ash (Zanthoxylum bungeanum) seed kernel oil (PASO) on the lipid metabolism of grass carp (Ctenopharyngodon idellus) under a high-fat diet, PASO were added into two lipid-level (4 g/kg and 8 g/kg) diets to form four isonitrogenous diets: soybean oil (SO), PASO, high-fat soybean oil (HSO), and high-fat prickly ash seed oil (HPASO). A total of 216 healthy grass carp (9.43 ± 0.82 g) were randomly divided into four groups and fed with the four diets, respectively, for 56 days. The result showed that the viscerosomatic index (VSI) and the content of the crude lipid in the hepatopancreas and muscle was significantly higher by oil levels (p < 0.05). The linolenic acid content in the body of the fish significantly increased in PASO and HPASO compared to that in SO and HSO (p < 0.05). The fatty acid composition of the hepatopancreas, intraperitoneal fat, and muscle in four dietary groups was significantly similar to the fatty acid composition in the diets (p < 0.05). More significant fat infiltration and nuclear translocation in the hepatopancreas of fish was found in the HSO group but was decreased in the HPASO group. The adipocyte size in the intraperitoneal fat tissue in the PASO group was significantly lower than that in the SO group (p < 0.05). The relative mRNA expression of the lipogenesis-related genes ppar-γ, cebp-α, and srebp-1c was significantly down-regulated in the PASO group compared with the SO group (p < 0.05), and the mRNA expression of lipolysis-related genes ppar-α and cpt-1 were significantly up-regulated in the PASO group (p < 0.05). In conclusion, dietary PASO showed the function of reducing lipid accumulation in the fish. This reduction might be attributed to the inhibition of the lipogenesis-related genes and the stimulation of the lipolysis-related genes, which were probably modulated by the high content of linolenic acid in PASO.

Funder

National Key Research and Development Program of China

Special Research and Development Program Project of Chinese Academy of Se-enriched Industry

Key Research and Development plan of Shaanxi Province

Shaanxi Special plan project of technological innovation guidance

Publisher

MDPI AG

Reference63 articles.

1. Recent Developments in the Essential Fatty Acid Nutrition of Fish;Sargent;Aquaculture,1999

2. Effect of Dietary Lipid on Growth Performance, Body Composition, Plasma Biochemical Parameters and Liver Fatty Acids Content of Juvenile Yellow Drum Nibea albiflora;Wang;Aquac. Rep.,2016

3. Halver, J.E., and Hardy, R.W. (2003). Fish Nutrition, Academic Press. [3rd ed.].

4. The Risk Assessment of High-Fat Diet in Farmed Fish and Its Mitigation Approaches: A Review;Naiel;J. Anim. Physiol. Anim. Nutr.,2023

5. Influences of Dietary Sodium Butyrate on Growth, Digestion, Antioxidant Capacity and Health in Juvenile Onychostoma Macrolepis Fed on High-Fat Diet;Gou;Aquacult. Rep.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3