Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides)

Author:

Jiang Feifan1,Huang Wenqing2,Zhou Meng1,Gao Hongyan1,Lu Xiaozhou1,Yu Zhoulin1ORCID,Sun Miao1,Huang Yanhua1

Affiliation:

1. Institute of Animal Health Breeding Innovation, College of Animal Science and Technology, Zhongkai College of Agricultural Engineering, Guangzhou 510225, China

2. Guangzhou Fishteach Biotechnology Co., Ltd., Guangzhou 510640, China

Abstract

The present research examined the impact of L-glutamic acid (Glu) supplementation on the growth performance, muscle composition, gene expression correlated with muscle growth, and intestinal health of largemouth bass. There were 525 fish in total, which were distributed randomly into five groups. Each group had three replicates, and each replicate consisted of 35 fish. Groups with control and experimental diets were assigned glutamic acid amounts of 0.2%, 0.4%, 0.6%, and 0.8%. The findings demonstrated that glutamic acid supplementation enhanced growth performance, feed intake (FI), and condition factor (CF), with the best value being attained at 0.4% Glu. The mean muscle fiber area was increased and the muscle fiber density was decreased in the 0.6% Glu group. The levels of total amino acids and specific amino acids, such as glutamic acid, aspartic acid, leucine, valine, alanine, and glycine, were shown to be higher in the 0.6% Glu group. In the 0.6% Glu group, the mRNA expression levels of atrogin-1, murf-1, foxo3a, and 4e-bp1 were decreased compared to the control group. Conversely, the mRNA expression levels of myf5, myog, myod, s6k1, tor, akt, and pi3k were increased in the 0.6% Glu group compared to the control group. The 0.4% Glu group had higher intestinal amylase, lipase, and protease activities and greater villus height, villus width, and muscle thickness. In summary, Glu can support largemouth bass growth, muscular development, intestinal digestion, and absorption.

Funder

Guangdong Provincial Department of Education

the research and development of special feed for California bass

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3