Study on the Hydrodynamic Performance of the Beam Used in the Antarctic Krill Beam Trawl

Author:

Li Yuyan1,Liu Zheng2,Wang Zhongqiu1ORCID,Zhang Xun1,Wang Lumin1,Zhang Yu1,Ma Shuo1,Qi Guangrui1,Wang Yongjin1

Affiliation:

1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

2. CNFC Overseas Fisheries Co., Ltd., Beijing 100031, China

Abstract

The beam trawl is one of the primary operational trawls for Antarctic krill, and its beam provides horizontal expansion support for the trawl net. The hydrodynamic performance of the beam significantly affects the vertical expansion and sinking performance of the trawl, as well as impacts the energy consumption of the fishing vessel. In this study, the beam of the Antarctic krill trawl used on the “Shen Lan” fishing vessel served as a prototype. Three types of beams, cylindrical, airfoil, and elliptical, were designed. The hydrodynamic performances of beams with different shapes at different angles of attack were studied using numerical simulation, and the accuracy of the numerical simulation was validated through the flume test. The results show that the cylindrical beam has a higher drag coefficient and a lower lift coefficient, compared to the airfoil beam and the elliptical beam. Under different angles of attack, the cylindrical beam’s drag coefficient is, on average, 49.54% higher than that of the airfoil beam and 59.74% higher than that of the elliptical beam. Its lift coefficient is 87.79% lower than that of the airfoil beam and 85.06% lower than that of the elliptical beam, respectively. At different angles of attack, the hydrodynamic coefficients of the airfoil beam and the elliptical beam are similar, and their trends, with respect to the angle of attack, are generally consistent. The drag coefficients increase with an increasing angle of attack, while the lift coefficients show a trend of initially increasing and then decreasing with an increasing angle of attack. The absolute values of the lift coefficients for the airfoil beam and the elliptical beam both reach their maximum values at an angle of attack of 45°, with values of 0.703 and 0.473, respectively. Compared to the cylindrical beam, the hydrodynamic performances of the airfoil beam and elliptical beam are superior.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3