Xenotransplantation of European Eel (Anguilla anguilla) Spermatogonia in Zebrafish (Danio rerio) and European Sea Bass (Dicentrarchus labrax)

Author:

Blanes-García Marta1ORCID,Marinović Zoran2,Morini Marina1,Vergnet Alain3,Horváth Ákos2,Asturiano Juan F.1ORCID

Affiliation:

1. Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

2. Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő, Hungary

3. CNRS, Ifremer, IRD, INRAE, MARBEC Université de Montpellier, 34250 Palavas-les-Flots, France

Abstract

The European eel encounters challenges in achieving sexual maturation in captivity, which has been a concern for researchers. This study explores surrogate broodstock technology as an alternative approach for eel production. The present study aimed to evaluate zebrafish and European sea bass as potential recipients for European eel spermatogonia transplantation, given the abundance of eel type A spermatogonia (SPGA). Immature European eel testes were dissected and maintained at 4 °C or cryopreserved. SPGA were obtained by dissociation of fresh or post-thawed tissue, employing an enzymatic solution, and then labelled with fluorescent membrane marker PKH26. SPGA from fresh tissue were transplanted into wild-type zebrafish larvae and triploid European sea bass larvae, while SPGA from cryopreserved testis were transplanted into vasa::egfp transgenic zebrafish larvae. One-and-a-half months post-transplantation (mpt), fluorescent donor cells were not detected in the gonads of zebrafish or European sea bass. Molecular qPCR analyses at 1.5 or 6 mpt did not reveal European eel-specific gene expression in the gonads of any transplanted fish. The findings suggest that the gonadal microenvironments of zebrafish and European sea bass are unsuitable for the development of European eel spermatogonia, highlighting distinctive spermatogonial stem cell migration mechanisms within teleost species

Funder

Spanish Ministry of Science, Innovation and Universities

Spanish Ministry of Science and Innovation

European Union NextGenerationEU

Generalitat Valenciana to SEASPERM

EU H2020 Research Innovation Program

UPV

National Research, Development and Innovation Office of Hungary

National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation fund

KKP program of the Hungarian University of Agriculture and Life Sciences

Flagship Research Groups Programme of the Hungarian University of Agriculture and Life Sciences

Research Excellence Programme of the Hungarian University of Agriculture and Life Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3