Abstract
Tunnel magnetoresistance (TMR) is a kind of magnetic sensor with the advantages of low cost and high sensitivity. For ultra-weak and low-frequency magnetic field measurement, the TMR sensor is affected by the 1/f noise. This paper proposes an AC modulation method with impedance compensation to improve the performance. The DC and AC characteristics of the sensors were measured and are presented here. It was found that both the equivalent resistance and capacitor of the sensors are affected by the external magnetic field. The TMR sensors are connected as a push–pull bridge circuit to measure the magnetic field. To reduce the common-mode noise, two similar bridge circuits form a magnetic gradiometer. Experimental results show that the sensor’s sensitivity in the low-frequency range is obviously improved by the modulation and impedance compensation. The signal-to-noise ratio of the sensor at 1 Hz was increased about 25.3 dB by the AC modulation, impedance compensation, and gradiometer measurement setup. In addition, the sensitivity of the sensor was improved from 165.2 to 222.1 mV/V/mT. Ultra-weak magnetic signals, namely magnetocardiography signals of two human bodies, were measured by the sensor in an unshielded environment. It was seen that the R peak of MCG can be clearly visualized from the recorded signal.
Funder
Science and Technology Commission of Shanghai Municipality
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献