Affiliation:
1. Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science , 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Abstract
Suppression of 1/f noise in tunnel magnetoresistance (TMR) sensors is a central issue in the realization of magnetic field sensors with ultrafine magnetic field detectivity. Although AC modulation with an external magnetic field has been proposed as a method to shift the operating frequency of a sensor to a high frequency and substantially suppress 1/f noise, its effects on the two types of 1/f noise, that is, magnetic and electrical 1/f noise, are not well understood. In this study, we investigated the noise characteristics and signal detection performance of TMR sensors with an even-function resistance-magnetic field curve operated by the AC modulation method. For one TMR device in which the magnetic 1/f noise was dominant, AC modulation degraded the magnetic field detectivity owing to the additional noise induced by the AC modulation field. However, in another TMR device, in which the electrical 1/f noise was artificially enhanced by introducing lattice defects in the MgO tunnel barrier, AC modulation effectively suppressed the 1/f noise and improved the magnetic field detectivity by one order. This demonstrates that the AC modulation method using an external magnetic field is effective for magnetic field sensors in which electrical 1/f noise is dominant.
Funder
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy