Bit-Level Automotive Controller Area Network Message Reverse Framework Based on Linear Regression

Author:

Bi ZixiangORCID,Xu Guoai,Xu GuoshengORCID,Wang Chenyu,Zhang Sutao

Abstract

Modern intelligent and networked vehicles are increasingly equipped with electronic control units (ECUs) with increased computing power. These electronic devices form an in-vehicle network via the Controller Area Network (CAN) bus, the de facto standard for modern vehicles. Although many ECUs provide convenience to drivers and passengers, they also increase the potential for cyber security threats in motor vehicles. Numerous attacks on vehicles have been reported, and the commonality among these attacks is that they inject malicious messages into the CAN network. To close the security holes of CAN, original equipment manufacturers (OEMs) keep the Database CAN (DBC) file describing the content of CAN messages, confidential. This policy is ineffective against cyberattacks but limits in-depth investigation of CAN messages and hinders the development of in-vehicle intrusion detection systems (IDS) and CAN fuzz testing. Current research reverses CAN messages through tokenization, machine learning, and diagnostic information matching to obtain details of CAN messages. However, the results of these algorithms yield only a fraction of the information specified in the DBC file regarding CAN messages, such as field boundaries and message IDs associated with specific functions. In this study, we propose multiple linear regression-based frameworks for bit-level inversion of CAN messages that can approximate the inversion of DBC files. The framework builds a multiple linear regression model for vehicle behavior and CAN traffic, filters the candidate messages based on the decision coefficients, and finally locates the bits describing the vehicle behavior to obtain the data length and alignment based on the model parameters. Moreover, this work shows that the system has high reversion accuracy and outperforms existing systems in boundary delineation and filtering relevant messages in actual vehicles.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Number of Automotive Ecus Continues to Risehttps://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise

2. CANbus—All You Need to Knowhttps://www.rs-online.com/designspark/canbus-all-you-need-to-know

3. Evaluation of CAN Bus Security Challenges

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3