Yaw Rate Prediction and Tilting Feedforward Synchronous Control of Narrow Tilting Vehicle Based on RNN

Author:

Gao Ruolin1ORCID,Li Haitao1,Wang Ya2,Xu Shaobing23,Wei Wenjun12,Zhang Xiao1,Li Na1

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Beijing Zuoqi Technology Co., Ltd., Beijing 100083, China

3. School of Vehicle and Mobility, Tsinghua University, Beijing 100083, China

Abstract

The synchronous control of yaw motion and tilting motion is an important problem related to the lateral stability and energy consumption of narrow tilting vehicles. This paper proposes a method for the tilting control of narrow tilting vehicles: tilting feedforward synchronous control. This method utilizes a proposed novel prediction method for yaw rate based on a recurrent neural network. Meanwhile, considering that classical recurrent neural networks can only predict yaw rate at a given time, and that yaw rate prediction generally needs to analyze a large amount of computer vision data, in this paper, the yaw rate is represented by a polynomial operation to predict the continuous yaw rate in the time domain; this prediction is realized using only the driving data of the vehicle itself and does not include the data generated by computer vision. A prototype experiment is provided in this work to prove the advantages and feasibility of the proposed tilting feedforward synchronous control method for narrow tilting vehicles. The proposed tilting feedforward synchronous control method can ensure the synchronous response of the yaw motion and the tilting motion of narrow tilting vehicles.

Funder

special construction project of “double first-class” scientific research of China

Government Procurement Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3