Whole System Data Integration for Condition Assessments of Climate Change Impacts: An Example in High-Mountain Ecosystems in Rila (Bulgaria)

Author:

Katrandzhiev KostadinORCID,Gocheva Kremena,Bratanova-Doncheva Svetla

Abstract

To study climate impacts, data integration from heterogeneous sources is imperative for long-term monitoring in data sparse areas such as the High Mountain Ecosystems in the Rila Mountain, Bulgaria—difficult to both access and observe remotely due to frequent clouds. This task is especially challenging because discerning trends in vegetation location, condition and functioning requires observing over decades. To integrate the existing sparse data, we apply the Whole System framework adapted nationally in the Bulgarian Methodological Framework for Mapping and Assessment of ecosystem services. As the framework mainly relies on field data, we complement it with remote sensing vegetation indices (NDVI, NDWI and NDGI) for 42 years, together with Copernicus High Resolution Layer products and climate change reanalysis data for 40 years. We confirmed that the Whole System framework is extensible and semantically, ontologically and methodologically well suited for heterogeneous data fusion, co-analysis, reanalysis and joint interpretation. We found trends in ecosystem extent and functioning, in particular species composition, in line with climate change trends since around 1990 and exclusively attributable to climate change since 2015. Furthermore, we specified a data crosswalk between habitats and ecosystems at Level 3 (ecosystem subtype), and define new candidate indicators suitable for remotely monitoring climate change’s effects on the ecosystems’ extent and condition, as candidates for inclusion in the methodological framework.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3