DADE-DQN: Dual Action and Dual Environment Deep Q-Network for Enhancing Stock Trading Strategy

Author:

Huang Yuling1ORCID,Lu Xiaoping1ORCID,Zhou Chujin1,Song Yunlin2

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macao, China

2. Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China

Abstract

Deep reinforcement learning (DRL) has attracted strong interest since AlphaGo beat human professionals, and its applications in stock trading are widespread. In this paper, an enhanced stock trading strategy called Dual Action and Dual Environment Deep Q-Network (DADE-DQN) for profit and risk reduction is proposed. Our approach incorporates several key highlights. First, to achieve a better balance between exploration and exploitation, a dual-action selection and dual-environment mechanism are incorporated into our DQN framework. Second, our approach optimizes the utilization of storage transitions by utilizing independent replay memories and performing dual mini-batch updates, leading to faster convergence and more efficient learning. Third, a novel deep network structure that incorporates Long Short-Term Memory (LSTM) and attention mechanisms is introduced, thereby improving the network’s ability to capture essential features and patterns. In addition, an innovative feature selection method is presented to efficiently enhance the input data by utilizing mutual information to identify and eliminate irrelevant features. Evaluation on six datasets shows that our DADE-DQN algorithm outperforms multiple DRL-based strategies (TDQN, DQN-Pattern, DQN-Vanilla) and traditional strategies (B&H, S&H, MR, TF). For example, on the KS11 dataset, the DADE-DQN strategy has achieved an impressive cumulative return of 79.43% and a Sharpe ratio of 2.21, outperforming all other methods. These experimental results demonstrate the performance of our approach in enhancing stock trading strategies.

Funder

Faculty Research Grants, Macau University of Science and Technology

Science and Technology Development Fund, Macau SAR

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference62 articles.

1. Hamilton, J.D. (2020). Time Series Analysis, Princeton University Press.

2. Recent Advances in Reinforcement Learning in Finance;Hambly;Math. Financ.,2021

3. Mastering the game of Go without human knowledge;Silver;Nature,2017

4. Grandmaster level in StarCraft II using multi-agent reinforcement learning;Vinyals;Nature,2019

5. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S., and Hesse, C. (2019). Dota 2 with Large Scale Deep Reinforcement Learning. arXiv.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3