Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings

Author:

Huang QianORCID,Hsieh Chenghung,Hsieh Jiaen,Liu Chunchen

Abstract

Artificial intelligence (AI) is fundamentally transforming smart buildings by increasing energy efficiency and operational productivity, improving life experience, and providing better healthcare services. Sudden Infant Death Syndrome (SIDS) is an unexpected and unexplained death of infants under one year old. Previous research reports that sleeping on the back can significantly reduce the risk of SIDS. Existing sensor-based wearable or touchable monitors have serious drawbacks such as inconvenience and false alarm, so they are not attractive in monitoring infant sleeping postures. Several recent studies use a camera, portable electronics, and AI algorithm to monitor the sleep postures of infants. However, there are two major bottlenecks that prevent AI from detecting potential baby sleeping hazards in smart buildings. In order to overcome these bottlenecks, in this work, we create a complete dataset containing 10,240 day and night vision samples, and use post-training weight quantization to solve the huge memory demand problem. Experimental results verify the effectiveness and benefits of our proposed idea. Compared with the state-of-the-art AI algorithms in the literature, the proposed method reduces memory footprint by at least 89%, while achieving a similar high detection accuracy of about 90%. Our proposed AI algorithm only requires 6.4 MB of memory space, while other existing AI algorithms for sleep posture detection require 58.2 MB to 275 MB of memory space. This comparison shows that the memory is reduced by at least 9 times without sacrificing the detection accuracy. Therefore, our proposed memory-efficient AI algorithm has great potential to be deployed and to run on edge devices, such as micro-controllers and Raspberry Pi, which have low memory footprint, limited power budget, and constrained computing resources.

Publisher

MDPI AG

Reference41 articles.

1. Review: Energy-Efficient Smart Buildings Driven by Emerging Sensing, Communication, and Machine Learning Technologies;Huang;Eng. Lett.,2018

2. Rapid Internet of Things (IoT) prototype for accurate people counting towards energy efficient buildings

3. Development of CNN-based visual recognition air conditioner for smart buildings

4. Smart Building Applications and Information System Hardware Co-Design;Huang,2017

5. Infant sleeping position and the sudden infant death syndrome: systematic review of observational studies and historical review of recommendations from 1940 to 2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3