An Infrared Array Sensor-Based Approach for Activity Detection, Combining Low-Cost Technology with Advanced Deep Learning Techniques

Author:

Muthukumar Krishnan ArumugasamyORCID,Bouazizi MondherORCID,Ohtsuki TomoakiORCID

Abstract

In this paper, we propose an activity detection system using a 24 × 32 resolution infrared array sensor placed on the ceiling. We first collect the data at different resolutions (i.e., 24 × 32, 12 × 16, and 6 × 8) and apply the advanced deep learning (DL) techniques of Super-Resolution (SR) and denoising to enhance the quality of the images. We then classify the images/sequences of images depending on the activities the subject is performing using a hybrid deep learning model combining a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM). We use data augmentation to improve the training of the neural networks by incorporating a wider variety of samples. The process of data augmentation is performed by a Conditional Generative Adversarial Network (CGAN). By enhancing the images using SR, removing the noise, and adding more training samples via data augmentation, our target is to improve the classification accuracy of the neural network. Through experiments, we show that employing these deep learning techniques to low-resolution noisy infrared images leads to a noticeable improvement in performance. The classification accuracy improved from 78.32% to 84.43% (for images with 6 × 8 resolution), and from 90.11% to 94.54% (for images with 12 × 16 resolution) when we used the CNN and CNN + LSTM networks, respectively.

Funder

Keio Leading-Edge Laboratory of Science and Technology, Japan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Activity, Fall and Gait Detection Using Multiple 2D LiDARs;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

2. Batch Fabrication of Flexible Paper-Based Pressure Sensors via Thermoplastic Self-Packaging;2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS);2023-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3