Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester

Author:

Su Wei-Jiun1ORCID,Tseng Chu-Hsiang1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

Abstract

The harvesting efficiency of a cantilevered piezoelectric energy harvester is limited by its uneven strain distribution. Moreover, a cantilevered harvester requires a large workspace due to the large displacement of its free end. To address these issues, a novel piezoelectric energy harvester based on an extended simply supported beam is proposed. The proposed design features a simply supported piezoelectric main beam with an extended beam attached to its roller end and a tip mass to reduce the resonant frequency. The theoretical model of the proposed piezoelectric energy harvester is developed based on the Euler–Bernoulli beam theory. The model has been experimentally validated through the fabrication of a prototype. The extended beam and tip mass are adjusted to see their influence on the performance of the harvester. The resonant frequency can be maintained by shortening the extended beam and increasing the tip mass simultaneously. A shorter extend beam leads to a more even strain distribution in the piezoelectric layer, resulting in an enhanced output voltage. Moreover, the simulation results show that a torsional spring is installed on the roller joint which greatly influences the voltage output. The strain distribution becomes more even when proper compressive preload is applied on the main beam. Experiments have shown that the proposed design enhances the output power by 86% and reduces tip displacement by 63.2% compared to a traditional cantilevered harvester.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3