A novel two-degrees-of-freedom piezoelectric energy harvester

Author:

Wu Hao1,Tang Lihua1,Yang Yaowen1,Soh Chee Kiong1

Affiliation:

1. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore

Abstract

Energy harvesting from ambient vibrations using piezoelectric effect is a promising alternative solution for powering small electronics such as wireless sensors. A conventional piezoelectric energy harvester usually consists of a cantilevered beam with a proof mass at its free end. For such a device, the second resonance of the piezoelectric energy harvester is usually ignored because of its high frequency as well as low response level compared to the first resonance. Hence, only the first mode has been frequently exploited for energy harvesting in the reported literature. In this article, a novel compact piezoelectric energy harvester using two vibration modes has been developed. The harvester comprises one main cantilever beam and an inner secondary cantilever beam, each of which is bonded with piezoelectric transducers. By varying the proof masses, the first two resonant frequencies of the harvester can be tuned close enough to achieve useful wide bandwidth. Meanwhile, this compact design efficiently utilizes the cantilever beam by generating significant power output from both the main and secondary beams. An experiment and simulation were carried out to validate the design concept. The results show that the proposed novel piezoelectric energy harvester is more adaptive and functional in practical vibrational circumstances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3